Abstract
A theoretical treatment of antiplane crack problem of two collinear cracks on the two sides of and perpendicular to the interface between a functionally graded orthotropic strip bonded to an orthotropic homogeneous substrate is put forward. Various internal cracks and crack terminating at the interface and crack crossing the interface configurations are investigated, respectively. The problem is formulated in terms of a singular integral equation with the crack face displacement as the unknown variable. The asymptotic stress field near the tip of a crack crossing the interface is examined, and it is shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case, the “kink” in material property at the interface does not introduce any singularity. Numerical calculations are carried out, and the influences of the orthotropy and nonhomogeneous parameters and crack interactions on the mode III stress intensity factors are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.