Abstract

We study the collective behavior of shear bands in HY-100 steel and OFHC copper taking into account the dipolar effects. Starting from mathematical model, we present new numerical methodology that allows one to simulate the processes of shear strain localization in nonpolar and dipolar materials. The verification procedure was performed to prove the efficiency and accuracy of the proposed method. Using the proposed algorithm we investigate the statistical characteristics of the shear strain localization processes in dipolar materials and compare results with nonpolar case. In particular, we obtain the statistical distributions of the width of localization zones and distance between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.