Abstract

Lying below Vatnajokull ice cap in Iceland, Barðarbunga stratovolcano began experiencing wholesale caldera collapse in 2014 August 16, one of the largest such events recorded in the modern instrumental era. Simultaneous with this collapse is the initiation of a plate boundary rifting episode north of the caldera. Observations using the international constellation of radar satellites indicate rapid 50 cm d^(−1) subsidence of the glacier surface overlying the collapsing caldera and metre-scale crustal deformation in the active rift zone. Anomalous earthquakes around the rim of the caldera with highly nondouble-couple focal mechanisms provide a mechanical link to the dynamics of the collapsing magma chamber. A model of the collapse consistent with available geodetic and seismic observations suggests that the majority of the observed subsidence occurs aseismically via a deflating sill-like magma chamber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.