Abstract
The use of a non-prismatic member such as a stepped beam as a design method has the ability to function as a tool for steel beams optimization. A cover plate is partially welded on the upper and lower flange of the member at the maximum bending moment location to increase its flexural strength and, under critical load, flexural members bend about its strong axis, displace to the lateral direction, and twist coincidentally through a phenomenon known as the Lateral-Torsional Buckling (LTB). There is, however, no equations in the AISC 360-16 specification to calculate the critical moment of a stepped beam (Mst). Therefore, this research focuses on developing Mst for a simply supported stepped beam which deforms on its shear center under static-transverse loading through the use of a collapse analysis and the behavior of the beam. The results showed the welded cover plates consequently increased the LTB resistance of the prismatic I-shaped steel beam from 9.8% to 202% while the critical moment increased more significantly with an increment in the ratio of the cover plate length to the unbraced length (α). The cover plate thickness was observed to have dominantly affected only a large α ratio while the post-buckling characteristic of large α showed a sudden collapse phenomenon. Furthermore, the LTB modification factor was generated in this study due to the initial geometrical imperfection from the first mode of Eigen shape with maximum amplitude Lb/2000 (Cb1) and stepped beam shape (Cst) which were required to estimate the critical moment of a stepped beam based on the AISC equation for a prismatic beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.