Abstract

The Local Group environment at 1-10 Mpc expands linearly and smoothly, as if ruled by uniform matter, while observations show on the same scales the very lumpy local galaxy universe. This enigma in cosmology has also been demonstrated by high-resolution N-body CDM simulations. We suggest that the homogeneous dark energy component, revealed by SNIa observations, may resolve the problem of the local cold Hubble flow within the highly non-uniform environment. Linear density perturbations on a homogeneous background with the equation of state are decaying for . Exact non-linear Einstein's equations for a spherically symmetric matter concentration, show that there is a zero-mass surface where the positive mass of the local cloud is compensated by the negative dark energy mass, and beyond this surface dark energy dominates dynamically. In such regions the velocity dispersion is adiabatically cooling, and this may explain why the Hubble law starts on the outskirts of the Local Group, with the same H0 as globally and with a remarkably small velocity dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.