Abstract
In the cointegrated vector autoregression (CVAR) literature, deterministic terms have until now been analyzed on a case-by-case, or as-needed basis. We give a comprehensive unified treatment of deterministic terms in the additive model X(t)=Z(t) Y(t), where Z(t) belongs to a large class of deterministic regressors and Y(t) is a zero-mean CVAR. We suggest an extended model that can be estimated by reduced rank regression and give a condition for when the additive and extended models are asymptotically equivalent, as well as an algorithm for deriving the additive model parameters from the extended model parameters. We derive asymptotic properties of the maximum likelihood estimators and discuss tests for rank and tests on the deterministic terms. In particular, we give conditions under which the estimators are asymptotically (mixed) Gaussian, such that associated tests are X 2 -distributed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.