Abstract

We compute the integer cohomology rings of the ``polygon spaces'' introduced in [Hausmann,Klyachko,Kapovich-Millson]. This is done by embedding them in certain toric varieties; the restriction map on cohomology is surjective and we calculate its kernel using ideas from the theory of Gr\obner bases. Since we do not invert the prime 2, we can tensor with Z/2; halving all degrees we show this produces the Z/2 cohomology rings of planar polygon spaces. In the equilateral case, where there is an action of the symmetric group permuting the edges, we show that the induced action on the integer cohomology is _not_ the standard one, despite it being so on the rational cohomology [Kl]. Finally, our formulae for the Poincar\'e polynomials are more computationally effective than those known [Kl].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.