Abstract

The coherence time and transverse coherence length of a low-frequency (100–300 Hz) sound field that is formed by an omnidirectional point source at a distance of 10–30 km in a shallow-water acoustic waveguide, which is characteristic of an open ocean shelf, were estimated analytically and in a numerical experiment. An anisotropic field of background internal waves is considered as a source of spatiotemporal fluctuations. It is shown that the coherence time decreases as the frequency increases, and strongly depends on the perturbation-movement direction. The transverse coherence length is primarily determined by phase incursions that are related to the cylindrical shape of the acoustic-wave front. In the case of transverse propagation, background internal waves may lead to significant variations in this length. The introduction of compensating phase corrections during processing provides a considerable increase in the average transverse coherence length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.