Abstract

SummaryThe coexistence of autoimmune diabetes and maturity-onset diabetes (MODY) is rare. The absence of pancreatic autoantibodies is a key factor prompting MODY genetic testing. In this study, we report three cases of young-onset diabetes with progressive beta-cell dysfunction, strongly positive glutamic acid decarboxylase (GAD) antibodies, and genetic confirmation of pathogenic gene variants of HNF-1A, HNF-4A, and ABCC8-MODY. The first case is a woman diagnosed with HNF-1A-MODY diabetes more than 30 years after her diagnosis of adult-onset diabetes at 25 years. She required insulin after her fourth pregnancy. She became ketotic on oral hypoglycaemic agents (OHAs) and subsequently, her GAD antibodies tested positive. The second case is a woman diagnosed with diabetes at 17 years who was subsequently diagnosed with HNF-4A-MODY after many hypoglycaemic episodes on low-dose insulin. GAD antibodies were strongly positive. The last case is a man diagnosed with diabetes at 26 years who was well controlled on OHAs and required insulin years later due to sudden deterioration in glycaemic control. His ABCC8-MODY was diagnosed upon realisation of strong family history and his GAD antibodies tested positive. All subjects are now treated with insulin. Less than 1% of subjects with MODY have positive autoantibodies. These cases highlight individuals who may have two different types of diabetes simultaneously or consecutively. Deterioration of glycaemic control in subjects with MODY diabetes should highlight the need to look for the emergence of autoantibodies. At each clinic visit, one should update the family history as MODY was diagnosed in each case after the development of diabetes in their offspring.Learning pointsThese cases highlight the rare coexistence of autoimmune diabetes and MODY.Deterioration of glycaemic control in subjects with MODY diabetes should highlight the emergence of autoantibodies.One should revise and update the family history as the diagnosis of MODY was made after the development of diabetes in offspring.Understanding the spectrum of diabetes allows for precision medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call