Abstract

Self-similar solutions of the equations of a three-dimensional laminar boundary layer are of interest from two points of view. In the first place, they can be used to construct approximate calculating methods, making it possible to analyze several variants and to consider complex flows, in which it is impossible to neglect the interaction between the boundary layer and the external flow (for example, in the region of hypersonic interaction [1–3]). In the second place, the analysis of self-similar solutions permits clarifying the effect of individual parameters on one or another characteristic of the boundary layer and representing this effect in predictable form. One of the principal characteristics of a three-dimensional boundary layer, as also of a two-dimensional, is the coefficient of regeneration of the enthalpy. The value of this coefficient is needed for determining the temperature of a thermally insulated surface, as well as for finiing the real temperature (or enthalpy) head, which determines the value of the heat flux from a heated gas to the surface of the body around which the flow takes place. The article presents the results of calculations of the coefficient of regeneration of the enthalpy for locally self-similar solutions of the equations of a three-dimensional boundary layer, forming with flow around a cylindrical thermally insulated surface at an angle. It is clarified that the dependence of the coefficient of regeneration of the enthalpy on the determining parameters is not always continuous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.