Abstract

BackgroundVitis vinifera L. is one of society’s most important agricultural crops with a broad genetic variability. The difficulty in recognizing grapevine genotypes based on ampelographic traits and secondary metabolites prompted the development of molecular markers suitable for achieving variety genetic identification.FindingsHere, we propose a comparison between a multi-locus barcoding approach based on six chloroplast markers and a single-copy nuclear gene sequencing method using five coding regions combined with a character-based system with the aim of reconstructing cultivar-specific haplotypes and genotypes to be exploited for the molecular characterization of 157 V. vinifera accessions. The analysis of the chloroplast target regions proved the inadequacy of the DNA barcoding approach at the subspecies level, and hence further DNA genotyping analyses were targeted on the sequences of five nuclear single-copy genes amplified across all of the accessions. The sequencing of the coding region of the UFGT nuclear gene (UDP-glucose: flavonoid 3-0-glucosyltransferase, the key enzyme for the accumulation of anthocyanins in berry skins) enabled the discovery of discriminant SNPs (1/34 bp) and the reconstruction of 130 V. vinifera distinct genotypes. Most of the genotypes proved to be cultivar-specific, and only few genotypes were shared by more, although strictly related, cultivars.ConclusionOn the whole, this technique was successful for inferring SNP-based genotypes of grapevine accessions suitable for assessing the genetic identity and ancestry of international cultivars and also useful for corroborating some hypotheses regarding the origin of local varieties, suggesting several issues of misidentification (synonymy/homonymy).

Highlights

  • Vitis vinifera L. is one of society’s most important agricultural crops with a broad genetic variability

  • On the whole, this technique was successful for inferring single nucleotide polymorphisms (SNPs)-based genotypes of grapevine accessions suitable for assessing the genetic identity and ancestry of international cultivars and useful for corroborating some hypotheses regarding the origin of local varieties, suggesting several issues of misidentification

  • To what reported for other crop plants, the trnH-psbA intergenic spacer was found to be monomorphic among different V. vinifera cultivars, and poorly polymorphic among Vitis species, scoring only two SNPs

Read more

Summary

Objectives

This research aims to assess the applicability of chloroplast DNA barcoding to unambiguously distinguish varietal genotypes of V. vinifera [21]. The final goal of this study is to implement genomic approaches useful to distinguish grapevine subspecies entities to both safeguard the germplasm patrimony of the species, for instance protecting local varieties and resolving cases of homonymy and synonymy, and warrant the authenticity of the grapevine cultivars and their derivatives

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.