Abstract

The signal recognition particle (SRP) cotranslationally recognizes signal sequences of secretory proteins and targets ribosome-nascent chain complexes to the SRP receptor in the endoplasmic reticulum membrane, initiating translocation of the nascent chain through the Sec61 translocon. Although signal sequences do not have homology, they have similar structural regions: a positively charged N-terminus, a hydrophobic core and a more polar C-terminal region that contains the cleavage site for the signal peptidase. Here, we have used site-specific photocrosslinking to study SRP–signal sequence interactions. A photoreactive probe was incorporated into the middle of wild-type or mutated signal sequences of the secretory protein preprolactin by in vitro translation of mRNAs containing an amber-stop codon in the signal peptide in the presence of the Nε-(5-azido-2 nitrobenzoyl)-Lys-tRNAamb amber suppressor. A homogeneous population of SRP–ribosome-nascent chain complexes was obtained by the use of truncated mRNAs in translations performed in the presence of purified canine SRP. Quantitative analysis of the photoadducts revealed that charged residues at the N-terminus of the signal sequence or in the early part of the mature protein have only a mild effect on the SRP–signal sequence association. However, deletions of amino acid residues in the hydrophobic portion of the signal sequence severely affect SRP binding. The photocrosslinking data correlate with targeting efficiency and translocation across the membrane. Thus, the hydrophobic core of the signal sequence is primarily responsible for its recognition and binding by SRP, while positive charges fine-tune the SRP–signal sequence affinity and targeting to the translocon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.