Abstract

Short Gamma-Ray Bursts (SGRBs) are believed to arise from compact binary mergers (either neutron star-neutron star or black hole-neutron star). If so their jets must penetrate outflows that are ejected during the merger. As a jet crosses the ejecta it dissipates its energy, producing a hot cocoon which surrounds it. We present here 3D numerical simulations of jet propagation in mergers' outflows and we calculate the resulting emission. This emission consists of two components: the cooling emission, the leakage of the thermal energy of the hot cocoon, and the cocoon macronova that arises from the radioactive decay of the cocoon's material. This emission gives a brief (~ one hour) blue, wide angle signal. While the parameters of the outflow and jet are uncertain, for the configurations we have considered the signal is bright (~ -14 $-$ -15 absolute magnitude) and outshines all other predicted UV-optical signals. The signal is brighter when the jet breakout time is longer and its peak brightness does not depend strongly on the highly uncertain opacity. A rapid search for such a signal is a promising strategy to detect an electromagnetic merger counterpart. A detected candidate could be then followed by deep IR searches for the longer but weaker macronova arising from the rest of the ejecta.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.