Abstract

A visible light active p-n heterojunction photocatalyst was synthesized successfully through in-situ chemical oxidation copolymerization of aniline (ANI) and diphenylamine-4-sulfonate (DPAS) with the existence of coordination polymer nanorod (CPNR) under initiation of ammonium persulfate (APS). Compared with neat coordination polymer nanorod, the resulted p-n heterojunction photocatalyst exhibits higher H2 generationrate under visible light irradiation. In this heterojunction photocatalyst, as a p-type semiconductor possessing suitable energy levels with coordination polymer nanorod, poly-(aniline-co-N-(4-sulfophenyl)-aniline) (PAPSA) forms p-n heterojunction with n-type coordination polymer nanorod, the inner electric field of p-n heterojunction accelerates the separation of electrons and holes, which enhances H2 production performance. Furthermore, the influence of concentration ratio between DPAS and ANI on photocatalytic property of the p-n heterojunction photocatalyst was discussed and a reasonable condition to fabricate photocatalyst with high H2 generationrate had been obtained. During photocatalytic water splitting H2 generation, the p-n heterojunction photocatalyst exhibited outstanding stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call