Abstract

The Coarse-Time Positioning method is important for the quick positioning of the BeiDou Navigation Satellite System (BDS) navigation receiver in the weak signal environment. The coarse position estimation is the key technology of the Coarse-Time Positioning (CTP) for the BDS navigation receiver without coarse position assistance. In this paper, a Coarse-Position-Free Coarse-Time Positioning method based on mixed-type code phase ambiguity resolution is proposed. In this CTP method, in order to estimate the approximate position, the coarse position estimation method based on the mixed-type code phase ambiguity search is used. This method does not require any additional external auxiliary position information to complete the coarse position estimation. Based on the real observation data and dynamic simulation observation data, the test experiment is designed. According to the error of coarse position estimation, the positioning accuracy, and the success rate of the coarse-time solution, the Coarse-Position-Free Coarse-Time Positioning (CPFCTP) method of the BDS receiver based on the mixed-type code phase ambiguity resolution is evaluated. The experimental results show that, when the coarse-time deviation is within 30 s, the CPFCTP method has a success rate of over 97%. When the coarse-time deviation is within 5 s, the success rate of positioning is 100%. At the same time, the experimental results also show that, for the situation that the navigation signals of some BeiDou satellites are completely occluded, the CPFCTP method proposed in this paper can obtain the correct code phase ambiguity and still maintain a high success rate of CTP at the same time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.