Abstract
We study the fine-grained complexity of NP-complete satisfiability (SAT) problems and constraint satisfaction problems (CSPs) in the context of the strong exponential-time hypothesis (SETH) , showing non-trivial lower and upper bounds on the running time. Here, by a non-trivial lower bound for a problem SAT (Γ) (respectively CSP (Γ)) with constraint language Γ, we mean a value c 0 > 1 such that the problem cannot be solved in time O ( c n ) for any c < c 0 unless SETH is false, while a non-trivial upper bound is simply an algorithm for the problem running in time O ( c n ) for some c < 2. Such lower bounds have proven extremely elusive, and except for cases where c 0 =2 effectively no such previous bound was known. We achieve this by employing an algebraic framework, studying constraint languages Γ in terms of their algebraic properties. We uncover a powerful algebraic framework where a mild restriction on the allowed constraints offers a concise algebraic characterization. On the relational side we restrict ourselves to Boolean languages closed under variable negation and partial assignment, called sign-symmetric languages. On the algebraic side this results in a description via partial operations arising from system of identities, with a close connection to operations resulting in tractable CSPs, such as near unanimity operations and edge operations . Using this connection we construct improved algorithms for several interesting classes of sign-symmetric languages, and prove explicit lower bounds under SETH. Thus, we find the first example of an NP-complete SAT problem with a non-trivial algorithm which also admits a non-trivial lower bound under SETH. This suggests a dichotomy conjecture with a close connection to the CSP dichotomy theorem: an NP-complete SAT problem admits an improved algorithm if and only if it admits a non-trivial partial invariant of the above form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.