Abstract
Let (1→Nm→Gm→Qm→1)m∈N be a sequence of extensions of finite groups such that their coarse disjoint unions have bounded geometry. In this paper, we show that if the coarse disjoint unions of (Nm)m∈N and (Qm)m∈N are coarsely embeddable into Hilbert space, then the coarse Baum–Connes conjecture holds for the coarse disjoint union of (Gm)m∈N.As an application, the coarse Baum–Connes conjecture holds for the relative expanders constructed by G. Arzhantseva and R. Tessera, and the special box spaces of free groups discovered by T. Delabie and A. Khukhro, which do not coarsely embed into Hilbert space, yet do not contain a weakly embedded expander. This enlarges the class of metric spaces known to satisfy the coarse Baum–Connes conjecture. In particular, it solves an open problem raised by G. Arzhantseva and R. Tessera on the coarse Baum–Connes conjecture for relative expanders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.