Abstract

The co-adsorption of sulfate and metal ions on intrinsic and Al-doped graphene is investigated through first principles calculations. When SO42- ions exist only, both of intrinsic and Al-doped graphene can form stable adsorption configurations with SO42-. However, the presence of Cu2+/Ca2+/Zn2+/Mg2+ ions attenuates the interaction between intrinsic graphene and SO42-, resulting in weak physical adsorption between them, while Al-doped graphene can still constitute co-adsorption chemically with both SO42- and Cu2+/Ca2+/Zn2+/Mg2+ ions simultaneously. The sensitivity of Al-doped graphene towards co-adsorbed ions is in the order of SO42--Cu2+ > SO42--Zn2+ > SO42--Ca2+ > SO42--Mg2+. The research indicates Al-doped graphene could be a promising material for sensing sulfate ions under the presence of various metal ions. All of the calculations were carried out by using a first principles method based on density functional theory (DFT). The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional was selected to describe electron exchange-correlation energy. The double numerical plus polarization (DNP) was employed as the basis set. The conductor-like screening model (COSMO) was implemented to simulate the aqueous solvent effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call