Abstract

CO is a pollutant that is removed by oxidation using Pd, Pt or Rh as catalysts in the exhaust pipes of vehicles. Here, a quantum chemistry study on the CO + O2 reaction catalyzed by small Pdn clusters (n ≤ 5) using the PBE/TZ2P/ZORA method is performed. The limiting step in this reaction at low temperature and coverage is the O2 dissociation. Pdn clusters catalyze the O=O bond breaking, reducing the energy barrier from 119 kcal mol(-1) without catalyst to ∼35 kcal mol(-1). The charge transfer from Pd to the O2,ad antibonding orbital weakens, and finally breaks the O─O bond. The CO oxidation takes place by the Eley-Rideal (ER) mechanism or the Langmuir-Hinshelwood (LH) mechanism. The ER mechanism presents an energy barrier of 4.10-7.05 kcal mol(-1) and the formed CO2 is released after the reaction. The LH mechanism also shows barrier energies to produce CO2 (7-15 kcal mol(-1)) but it remains adsorbed on Pd clusters. An additional energy (7-25 kcal mol(-1)) is necessary to desorb CO2 and release the metal site. The triplet multiplicity is the ground states of studied Pdn clusters, with the following order of stability: triplet > singlet > quintet state. Graphical Abstract CO oxidation mechanism on small Pd clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.