Abstract

Chitin synthetase preparations from cell walls and chitosomes of the fungus Mucor rouxii were tested for their ability to synthesize chitosan when incubated with uridine diphosphate N-acetyl-D-glucosamine in the presence of chitin deacetylase. The most effective chitin synthetase preparation was one dissociated from cell walls with digitonin. The rate of chitosan synthesis by the wall-dissociated chitin synthetase was about three times that of an equivalent amount of cell walls. The chitosan-synthesizing ability of chitosomes was relatively low, but was more than tripled by treatment with digitonin. Presumably, digitonin improves chitosan yields of dissociating chitin synthetase. The dissociated enzyme would produce dispersed chitin chains that could be attacked by chitin deacetylase before they have time to crystallize into microfibrils. The regulation of chitin and chitosan syntheses in vivo may be determined by the organization of chitin synthetase molecules at the cell surface. Those molecules that remain organized as a complex, similar if not identical to that found in chitosomes, would produce mainly chitin. Chitosan would be preferentially produced by chitin synthetase molecules which are dispersed upon reaching the cell surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call