Abstract

The Aβ hypothesis has long been central to Alzheimer's disease (AD) theory, with a recent surge in attention following drug approvals targeting Aβ plaque clearance. Aβ42 oligomers (AβO) are key neurotoxins. While β-amyloid (Aβ) buildup is a hallmark of AD, postmortem brain analyses have unveiled human islet amyloid polypeptide (hIAPP) deposition in AD patients, suggesting a potential role in Alzheimer's pathology. This study investigates the neurotoxic effects of co-aggregates of Aβ42 and hIAPP, specifically focusing on their impact on cell survival, apoptosis, and AD-like pathology. We analyzed and compared the impact of AβO and Aβ42-hIAPP on cell survival in SH-SY5Y cells, apoptosis and inducing AD-like pathology in glutamatergic neurons. Aβ42-hIAPP co-oligomers exhibited significantly greater toxicity, causing 2.3–3.5 times higher cell death compared to AβO alone. Furthermore, apoptosis rates were significantly exacerbated in glutamatergic neurons when exposed to Aβ42-hIAPP co-oligomers. The study also revealed that Aβ42-hIAPP co-oligomers induced typical AD-like pathology in glutamatergic neurons, including the presence of Aβ deposits (detected by 6E10 and 4G8 immunofluorescence) and alterations in tau protein (changes in total tau HT7, phosphorylated tau AT8, AT180). Notably, Aβ42-hIAPP co-oligomers induced a more severe AD pathology compared to AβO alone. These findings provide compelling evidence for the heightened toxicity of Aβ42-hIAPP co-oligomers on neurons and their role in exacerbating AD pathology. The study contributes novel insights into the pathogenesis of Alzheimer's disease, highlighting the potential involvement of hIAPP in AD pathology. Together, these findings offer novel insights into AD pathogenesis and routes for constructing animal models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call