Abstract

BackgroundThe COVID-19 pandemic poses serious threats to public health globally, and the emerging mutations in SARS-CoV-2 genomes has become one of the major challenges of disease control. In the second epidemic wave in Nigeria, the roles of co-circulating SARS-CoV-2 Alpha (ie, B.1.1.7) and Eta (ie, B.1.525) variants in contributing to the epidemiological outcomes were of public health concerns for investigation.MethodsWe developed a mathematical model to capture the transmission dynamics of different types of strains in Nigeria. By fitting to the national-wide COVID-19 surveillance data, the transmission advantages of SARS-CoV-2 variants were estimated by likelihood-based inference framework.ResultsThe reproduction numbers were estimated to decrease steadily from 1.5 to 0.8 in the second epidemic wave. In December 2020, when both Alpha and Eta variants were at low prevalent levels, their transmission advantages (against the wild type) were estimated at 1.51 (95% credible intervals (CrI) = 1.48, 1.54), and 1.56 (95% CrI = 1.54, 1.59), respectively. In January 2021, when the original variants almost vanished, we estimated a weak but significant transmission advantage of Eta against Alpha variants with 1.14 (95% CrI = 1.11, 1.16).ConclusionsOur findings suggested evidence of the transmission advantages for both Alpha and Eta variants, of which Eta appeared slightly more infectious than Alpha. We highlighted the critical importance of COVID-19 control measures in mitigating the outbreak size and relaxing the burdens to health care systems in Nigeria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call