Abstract

The transitional zone is that length of rootlet containing both central and peripheral nervous tissue. The CNS-PNS interface may be defined as the basal lamina covering the intricately interwoven layer of astrocyte processes which forms the CNS surface and which is pierced by axons passing between the CNS and PNS. Study of transitional zone development defines morphologically the growth, relative movement and interaction of central and peripheral nervous tissues as they establish their mutually exclusive territories on either side of the CNS-PNS boundary, and helps to explain the wide variations in the form of the mature transitional zone. Nerve rootlets at first consist of bundles of bare axons. These become segregated by matrices of fine Schwann cell processes peripherally and of astrocyte processes centrally. The latter may prevent Schwann cell invasion of the CNS. Astrocyte processes branch profusely and come to form the principal central nervous tissue component of the transitional zone. Developmental changes in the transitional zone vary markedly between nerves, reflecting differences in its final morphology. Widespread relative movements and migration of CNS and PNS tissues take place during development, so that the central-peripheral interface changes shape and position, commonly oscillating along the proximodistal axis of the rootlet. For example, developing cervical ventral rootlets contain a transient central tissue projection, while that of lumbar ventral rootlets and to a lesser extent that of cervical dorsal rootlets alternately increase and decrease in length. In the developing cochlear nerve, a central tissue projection is present before birth, but regresses somewhat before a marked outgrowth of central nervous tissue along the nerve takes place, which reaches into the modiolus during the first week postnatum. During development, some astrocytic tissue may even break off and migrate distally into the root, giving rise to one or more glial islands within it. During the period immediately preceding birth, Schwann cells come to be present in very large numbers in that part of the rootlet immediately distal to the CNS-PNS interface, the proximal rootlet segment. Here they form prominent sleeves or clusters of closely packed cells which intertwine with and encapsulate one another on the rootlet surface. Such Schwann cell overcrowding in the proximal rootlet segment could result in part from distal overgrowth of the rapidly expanding CNS around axon bundles, which might strip the Schwann cells distally off the bundle segments so engulfed.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call