Abstract

The floral transition from vegetative to reproductive growth is pivotal in the plant life cycle. NUTRITION RESPONSE AND ROOT GROWTH (OsNRRa), as a CONSTANS, CONSTANS-LIKE, TOC1 (CCT) domain protein, delays flowering in rice, and an orthologous protein, CmNRRa, inhibits flowering in chrysanthemum; however, the underlying mechanism remains unknown. In this study, using yeast two-hybrid screening, we identified the 14-3-3 protein family member Cm14-3-3µ as a CmNRRa-interacting protein. A combination of bimolecular fluorescence complementation, pull-down, and co-immunoprecipitation assays was performed to confirm the physical interaction between CmNRRa and Cm14-3-3µ. In addition, expression analysis showed that CmNRRa but not Cm14-3-3µ responded to the diurnal rhythm, whereas both genes were highly expressed in leaves. Moreover, the function of Cm14-3-3µ in flowering time regulation was similar to that of CmNRRa. Furthermore, CmNRRa repressed chrysanthemum FLOWERING LOCUS T-like 3 (CmFTL3) and an APETALA 1 (AP1)/FRUITFULL (FUL)-like gene (CmAFL1) but induced TERMINAL FLOWER1 (CmTFL1) directly by binding to their promoters. Cm14-3-3µ enhanced the ability of CmNRRa to regulate the expression of these genes. These findings suggest that there is a synergistic relationship between CmNRRa and Cm14-3-3µ in flowering repression in chrysanthemum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.