Abstract

We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey. This dataset includes 148,659 quasars spread over the redshift range $0.8\leq z \leq 2.2$ and spanning 2112.9 square degrees. We use the Convolution Lagrangian Perturbation Theory (CLPT) approach with a Gaussian Streaming (GS) model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter halos hosting eBOSS quasar tracers. At the effective redshift $z_{\rm eff} = 1.52$, we measure the linear growth rate of structure $f\sigma_{8}(z_{\rm eff})= 0.426 \pm 0.077$, the expansion rate $H(z_{\rm eff})= 159^{+12}_{-13}(r_{s}^{\rm fid}/r_s){\rm km.s}^{-1}.{\rm Mpc}^{-1}$, and the angular diameter distance $D_{A}(z_{\rm eff})=1850^{+90}_{-115}\,(r_s/r_{s}^{\rm fid}){\rm Mpc}$, where $r_{s}$ is the sound horizon at the end of the baryon drag epoch and $r_{s}^{\rm fid}$ is its value in the fiducial cosmology. The quoted errors include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat $\Lambda$-Cold Dark Matter ($\Lambda$-CDM) cosmology with Planck parameters, and the measurement of $f\sigma_{8}$ extends the validity of General Relativity (GR) to higher redshifts($z>1$) This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.