Abstract

We present measurements of the angular correlation function of galaxies selected from a B_J=23.5 multicolour survey of two 5 degree by 5 degree fields located at high galactic latitudes. The galaxy catalogue of approximately 400,000 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low-redshift. Measurements of the z=0.4 correlation function at large angular scales show no evidence for a break from a power law though our results are not inconsistent with a break at >15 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly due to dwarf galaxies within z=0.11 clusters near the South Galactic Pole. Colour selection is used to study the clustering of galaxies z=0 to z=0.4. The galaxy correlation function is found to strongly depend on colour with red galaxies more strongly clustered than blue galaxies by a factor of 5 at small scales. The slope of the correlation function is also found to vary with colour with gamma=1.8 for red galaxies while gamma=1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied though there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range with clustering consistent with r_0=2 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe and suggests galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low redshift galaxy population with clustering properties similar to faint blue galaxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call