Abstract

The present paper discusses the clustering of elementary events in a kinetic relaxation model based on a time-domain analog of Bose-Einstein statistics. The clustering results in a spectrum of relaxation times which are integer-valued fractions of the relaxation time of single events, thus providing a stretching of the overall process towards shorter times. The predictions of the model are combined with an expression describing the 'universal' behaviour of solids of various structure and composition in a stress relaxation experiment. This yields the remarkable result that the average cluster size relating to the entire process is six. Correspondingly, the average relaxation time is found to be 1/6 of the relaxation time of the single events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.