Abstract

The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray selected AGN [$\rm log\, L_X (\rm 2-10\,keV)= 43.6^{+0.4}_{-0.4}\,erg/s$] in the redshift interval $z=0.5-1.2$. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIPERS spectroscopic galaxy survey to determine the cross-correlation signal between X-ray selected AGN (total of 318) and galaxies (about 20,\,000). We model the large scales (2-25\,Mpc) of the correlation function to infer a mean dark matter halo mass of $\log M / (M_{\odot} \, h^{-1}) = 12.50 ^{+0.22} _{-0.30}$ for the X-ray selected AGN sample. This measurement is about 0.5\,dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate luminosity X-ray AGN [$L_X (\rm 2-10\,keV)\approx 10^{42} - 10^{43}\,erg/s$] at similar redshifts. Our analysis also links the mean clustering properties of moderate luminosity AGN with those of powerful UV/optically selected QSOs, which are typically found in halos with masses few times $10^{12}\,M_{\odot}$. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes sub-dominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fueling modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.