Abstract

The width of the ω meson in cold nuclear matter is computed in a hadronic many-body approach, focusing on a detailed treatment of the medium modifications of intermediate πρ states. The π and ρ propagators are dressed by their self-energies in nuclear matter taken from previously constrained many-body calculations. The pion self-energy includes Nh and Δh excitations with short-range correlations, while the ρ self-energy incorporates the same dressing of its 2π cloud with a full 3-momentum dependence and vertex corrections, as well as direct resonance-hole excitations; both contributions were quantitatively fit to total photo-absorption spectra and πN→ρN scattering. Our calculations account for in-medium decays of type ωN→πN(⁎),ππN(Δ), and 2-body absorptions ωNN→NN(⁎),πNN. This causes deviations of the in-medium ω width from a linear behavior in density, with important contributions from spacelike ρ propagators. The ω width from the ρπ cloud may reach up to 200 MeV at normal nuclear matter density, with a moderate 3-momentum dependence. This largely resolves the discrepancy of linear T–ϱ approximations with the values deduced from nuclear photoproduction measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.