Abstract

Blood coagulation comprises a series of enzymatic reactions leading to thrombin generation and fibrin formation. This process is commonly illustrated in a waterfall-like manner, referred to as the coagulation cascade. In vivo, this "cascade" is initiated through the tissue factor (TF) pathway, once subendothelial TF is exposed and bound to coagulation factor VII (FVII) in blood. In vitro, a diminutive concentration of recombinant TF (rTF) is used as a clotting trigger in various global hemostasis assays such as the calibrated automated thrombogram, methods that assess fibrin turbidity and fibrin viscoelasticity tests such as rotational thromboelastometry. These assays aim to mimic in vivo global coagulation, and are useful in assessing hyper-/hypocoagulable disorders or monitoring therapies with hemostatic agents. An excess of rTF, a sufficient amount of negatively charged surfaces, various concentrations of exogenous thrombin, recombinant activated FVII, or recombinant activated FIXa are also used to initiate activation of specific sub-processes of the coagulation cascade in vitro. These approaches offer important information on certain specific coagulation pathways, while alterations in pro-/anticoagulants not participating in these pathways remain undetectable by these methods. Reviewing available data, we sought to enhance our knowledge of how choice of clotting trigger affects the outcome of hemostasis assays, and address the call for further investigations on this topic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call