Abstract

Given a Kähler manifold X with an ample line bundle L, we consider the metric space of finite energy geodesic rays associated to the Chern class c1(L). We characterize rays that can be approximated by ample test configurations. At the same time, we also characterize the closure of algebraic singularity types among all singularity types of quasi-plurisubharmonic functions, pointing out the very close relationship between these two seemingly unrelated problems.By Bonavero's holomorphic Morse inequalities, the arithmetic and non-pluripolar volumes of algebraic singularity types coincide. We show that in general the arithmetic volume dominates the non-pluripolar one, and equality holds exactly on the closure of algebraic singularity types. Analogously, we give an estimate for the Monge–Ampère energy of a general finite energy ray in terms of the arithmetic volumes along its Legendre transform. Equality holds exactly for rays approximable by test configurations.Various other cohomological and potential theoretic characterizations are given in both settings. As applications, we give a concrete formula for the non-Archimedean Monge–Ampère energy in terms of asymptotic expansion, and show the continuity of the projection map from L1 rays to non-Archimedean rays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.