Abstract

Particular solutions play a critical role in solving inhomogeneous problems using boundary methods such as boundary element methods or boundary meshless methods. In this short article, we derive the closed-form particular solutions for the Laplace and biharmonic operators using the Gaussian radial basis function. The derived particular solutions are implemented numerically to solve boundary value problems using the method of particular solutions and the localized method of approximate particular solutions. Two examples in 2D and 3D are given to show the effectiveness of the derived particular solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.