Abstract

BackgroundThe clonogenic assay is a versatile and frequently used tool to quantify reproductive cell survival in vitro. Current state-of-the-art analysis relies on plating efficiency-based calculations which assume a linear correlation between the number of cells seeded and the number of colonies counted. The present study was designed to test the validity of this assumption and to evaluate the robustness of clonogenic survival results obtained.MethodsA panel of 50 established cancer cell lines was used for comprehensive evaluation of the clonogenic assay procedure and data analysis. We assessed the performance of plating efficiency-based calculations and examined the influence of critical experimental parameters, such as cell density seeded, assay volume, incubation time, as well as the cell line-intrinsic factor of cellular cooperation by auto-/paracrine stimulation. Our findings were integrated into a novel mathematical approach for the analysis of clonogenic survival data.ResultsFor various cell lines, clonogenic growth behavior failed to be adequately described by a constant plating efficiency, since the density of cells seeded severely influenced the extent and the dynamics of clonogenic growth. This strongly impaired the robustness of survival calculations obtained by the current state-of-the-art method using plating efficiency-based normalization. A novel mathematical approach utilizing power regression and interpolation of matched colony numbers at different irradiation doses applied to the same dataset substantially reduced the impact of cell density on survival results. Cellular cooperation was observed to be responsible for the non-linear clonogenic growth behavior of a relevant number of cell lines and the impairment of survival calculations. With 28/50 cell lines of different tumor entities showing moderate to high degrees of cellular cooperation, this phenomenon was found to be unexpectedly common.ConclusionsOur study reveals that plating efficiency-based analysis of clonogenic survival data is profoundly compromised by cellular cooperation resulting in strongly underestimated assay-intrinsic errors in a relevant proportion of established cancer cell lines. This severely questions the use of plating efficiency-based calculations in studies aiming to achieve more than semiquantitative results. The novel approach presented here accounts for the phenomenon of cellular cooperation and allows the extraction of clonogenic survival results with clearly improved robustness.

Highlights

  • The clonogenic assay is a versatile and frequently used tool to quantify reproductive cell survival in vitro

  • We examined the impact of parameters, such as cell density seeded, assay volume, incubation time, and cellular cooperation by auto-/paracrine growth stimulation, on the clonogenic assay with particular focus on the robustness of the survival results obtained

  • In the multi-entity cell line panel, this applied to 28 of 50 cell lines (Fig. 4b). These findings indicate that cellular cooperation is an unexpectedly common phenomenon across various cell lines of different cancer entities which strongly impedes the robustness of clonogenic survival calculations when not properly taken into account

Read more

Summary

Introduction

The clonogenic assay is a versatile and frequently used tool to quantify reproductive cell survival in vitro. The mathematical analysis of clonogenic survival data relies on the major premise that under untreated conditions the relation between the number of seeded cells and the number of resulting colonies is a linear one approximated by a constant for normalization: the plating efficiency (PE). We provide clonogenic survival data of a large number of non-cooperatively and cooperatively growing cancer cell lines and show that the PE of the latter is far from being constant as it depends on the assay volume per cell during plating. This severely affects the robustness of subsequent survival calculations and generates assay-intrinsic errors which are not amenable to statistical error analyses. We propose a novel mathematical approach involving power regression and interpolation of matched colony numbers at different irradiation doses which accounts for the effects of cellular cooperation and allows the extraction of more robust survival results

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call