Abstract

Emerging evidence has demonstrated that long noncoding RNAs (lncRNAs) play critical roles in the epigenetic and transcriptional regulation of mammalian circadian systems. Circadian rhythmicity regulates many aspects of our immune system, and perturbation of the circadian clock can augment the inflammatory response. However, knowledge of the precise functions of lncRNAs in the regulation of immune functions within the circadian system is relatively limited. In this study, differentially expressed lncRNAs induced by Clock knockdown were screened via mRNA/lncRNA microarray and bioinformatic prediction analysis. We identified a Clock-regulated lncRNA, AK028245, which was correlated with the activation of the immune response. The expression levels of AK028245 were decreased in the spleen of immunosuppressed mice and elevated in immune-activated mice treated with lipopolysaccharide (LPS). Further, Clock knockdown decreased the expression of OTUD7B and A20, 2 early immune response factors acting on the NF-κB signaling pathway. Interestingly, inhibition of AK028245 increased their expression, mitigating the effects of Clock knockdown. In addition, inhibition of AK028245 downregulated the expression of tumor necrosis factor-α and interleukin-6 in the late stages of LPS stimulation and the expression of interferon-γ and Cxcl12 in the peak stages. We conclude that this newly identified lncRNA plays a role in the crosstalk between Clock and immune response regulators, likely resulting in a proinflammatory response targeting OTUD7B and A20. The lncRNA AK028245 has revealed a new mechanism of the immune response and provided new targets for the treatment of immune disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.