Abstract

Let ω(G) be the clique number of a graph G. We prove that if G runs over the set of graphs with a fixed degree sequence d, then the values ω(G) completely cover a line segment [a,b] of positive integers. For an arbitrary graphic degree sequence d, we define min(ω,d) and max(ω,d) as follows: $$$$ where \(\) is the graph of realizations of d.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.