Abstract

This article presents the review of the literature focusing on the current state-of-the-art in genetic, clinical, functional, and biomechanical aspects of pathogenesis, diagnostics, and treatment of congenital myopia. The involvement of hereditary factors in etiology of myopia has been repeatedly confirmed in numerous publications. Suffice it to mention that at least 23 MYP loci localized in 15 different chromosomes are associated with the development of myopia and determine the quantitative characteristics of this pathology. Nevertheless, the specific genes and alleles responsible for the predisposition to myopia belong, with a high degree of probability, to different polygenic systems and are therefore extremely difficult to identify. The results of investigations into congenital myopia give evidence that it must be a special clinical form of myopia characterized by certain peculiar patterns of the retinal relief in the foveal area, specific biophysical properties of the fibrous capsule of the eye, and a particular, both ophthalmologically and morphometrically, shape of the optic nerve. A substantial variation in the optic disc size and excavation patterns associated with congenital myopia as well as the relationship between these two parameters should be taken into consideration when examining the adult highly myopic patients for the early differential diagnostics of glaucoma. The biomechanical properties of the corneoscleral capsule affect the morphometric parameters of the optic disc in congenital and acquired myopia in the children which should be taken into account when choosing the type of the surgical treatment in the event of myopia progression and controlling its advancement. The available results of investigations confirm that contact correction in combination with additional spectacle correction is the most efficient method for the treatment of the patients presenting with congenital myopia. The data obtained show that the reconstructive treatment of the sclera including buckling of the posterior pole provides a very promising approach to the prevention of progression of myopic macular dystrophy and addressing a variety of forms and stages of myopic staphylomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call