Abstract
Skeletal muscle wasting occurs in both chronic and acute diseases. Increasing evidence has shown this debilitating process is associated with short- and long-term outcomes in critical, cancer and surgical patients. Both muscle quantity and quality, as reflected by the area and density of a given range of attenuation in CT scan, impact the patient prognosis. In addition, ultrasound and bioelectrical impedance analysis (BIA) are also widely used in the assessment of body composition due to their bedside viability and no radioactivity. Mechanism researches have revealed complicated pathways are involved in muscle wasting, which include altered IGF1-Akt-FoxO signaling, elevated levels of myostatin and activin A, activation of NF-κB pathway and glucocorticoid effects. Particularly, central nervous system (CNS) has been proven to participate in regulating muscle wasting in various conditions, such as infection and tumor. Several promising therapeutic agents have been under developing in the treatment of muscle atrophy, such as myostatin antagonist, ghrelin analog, non-steroidal selective androgen receptor modulators (SARMs). Notably, nutritional therapy is still the fundamental support in combating muscle wasting. However, the optimizing and tailored nutrition regimen relies on accurate metabolism measurement and large clinical trials in the future. Here, we will discuss the current understanding of muscle wasting and potential treatment in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.