Abstract

Germline RUNX1 mutations lead to familial platelet disorder with associated myeloid malignancy (FPDMM), characterized by thrombocytopenia, abnormal bleeding, and an elevated risk of developing myelodysplastic neoplasia (MDS) and acute myeloid leukemia (AML) at young age. However, it is not known why or how germline carriers of RUNX1 mutations have a particular propensity to develop myeloid hematologic malignancies, but the acquisition and composition of somatic mutations are believed to initiate and determine disease progression. We present a novel family pedigree that shares a common germline RUNX1R204* variant and exhibits a spectrum of somatic mutations and related myeloid malignancies (MM). RUNX1 mutations are associated with inferior clinical outcome; however, the proband of this family developed MDS with ring sideroblasts (MDS-RS), classified as a low-risk MDS subgroup. His relatively indolent clinical course is likely due to a specific somatic mutation in the SF3B1 gene. While the three main RUNX1isoforms have been ascribed various roles in normal hematopoiesis, they are now being increasingly recognized as involved in myeloid disease. We investigated the RUNX1 transcript isoform patterns in the proband and his sister, who carries the same germline RUNX1R204* variant, and has FPDMM but no MM. We demonstrate a RUNX1a increase in MDS-RS, as previously reported in MM. Interestingly, we identify a striking unbalance of RUNX1b and -c in FPDMM. In conclusion, this report reinforces the relevance of somatic variants on the clinical phenotypic heterogeneity in families with germline RUNX1 deficiency and investigates a potential new role for RUNX1 isoform disequilibrium as a mechanism for development of MM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call