Abstract
DNA non-homologous end-joining (NHEJ) is the major DNA double strand break (DSB) repair pathway in mammalian cells. Defects in NHEJ proteins confer marked radiosensitivity in cell lines and mice models, since radiation potently induces DSBs. The process of V(D)J recombination functions during the development of the immune response, and involves the introduction and rejoining of programmed DSBs to generate an array of diverse T and B cells. NHEJ rejoins these programmed DSBs. Consequently, NHEJ deficiency confers (severe) combined immunodeficiency - (S)CID - due to a failure to carry out V(D)J recombination efficiently. NHEJ also functions in class switch recombination, another step enhancing T and B cell diversity. Prompted by these findings, a search for radiosensitivity amongst (S)CID patients revealed a radiosensitive sub-class, defined as RS-SCID. Mutations in NHEJ genes, defining human syndromes deficient in DNA ligase IV (LIG4 Syndrome), XLF-Cernunnos, Artemis or DNA-PKcs, have been identified in such patients. Mutations in XRCC4 or Ku70,80 in patients have not been identified. RS-SCID patients frequently display additional characteristics including microcephaly, dysmorphic facial features and growth delay. Here, we overview the clinical spectrum of RS-SCID patients and discuss our current understanding of the underlying biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.