Abstract

Self-monitoring (self-testing and self-management) could be a valid option for oral anticoagulation therapy monitoring in the NHS, but current evidence on its clinical effectiveness or cost-effectiveness is limited. We investigated the clinical effectiveness and cost-effectiveness of point-of-care coagulometers for the self-monitoring of coagulation status in people receiving long-term vitamin K antagonist therapy, compared with standard clinic monitoring. We searched major electronic databases (e.g. MEDLINE, MEDLINE In Process & Other Non-Indexed Citations, EMBASE, Bioscience Information Service, Science Citation Index and Cochrane Central Register of Controlled Trials) from 2007 to May 2013. Reports published before 2007 were identified from the existing Cochrane review (major databases searched from inception to 2007). The economic model parameters were derived from the clinical effectiveness review, other relevant reviews, routine sources of cost data and clinical experts' advice. We assessed randomised controlled trials (RCTs) evaluating self-monitoring in people with atrial fibrillation or heart valve disease requiring long-term anticoagulation therapy. CoaguChek(®) XS and S models (Roche Diagnostics, Basel, Switzerland), INRatio2(®) PT/INR monitor (Alere Inc., San Diego, CA USA), and ProTime Microcoagulation system(®) (International Technidyne Corporation, Nexus Dx, Edison, NJ, USA) coagulometers were compared with standard monitoring. Where possible, we combined data from included trials using standard inverse variance methods. Risk of bias assessment was performed using the Cochrane risk of bias tool. A de novo economic model was developed to assess the cost-effectiveness over a 10-year period. We identified 26 RCTs (published in 45 papers) with a total of 8763 participants. CoaguChek was used in 85% of the trials. Primary analyses were based on data from 21 out of 26 trials. Only four trials were at low risk of bias. Major clinical events: self-monitoring was significantly better than standard monitoring in preventing thromboembolic events [relative risk (RR) 0.58, 95% confidence interval (CI) 0.40 to 0.84; p = 0.004]. In people with artificial heart valves (AHVs), self-monitoring almost halved the risk of thromboembolic events (RR 0.56, 95% CI 0.38 to 0.82; p = 0.003) and all-cause mortality (RR 0.54, 95% CI 0.32 to 0.92; p = 0.02). There was greater reduction in thromboembolic events and all-cause mortality through self-management but not through self-testing. Intermediate outcomes: self-testing, but not self-management, showed a modest but significantly higher percentage of time in therapeutic range, compared with standard care (weighted mean difference 4.44, 95% CI 1.71 to 7.18; p = 0.02). Patient-reported outcomes: improvements in patients' quality of life related to self-monitoring were observed in six out of nine trials. High preference rates were reported for self-monitoring (77% to 98% in four trials). Net health and social care costs over 10 years were £7295 (self-monitoring with INRatio2); £7324 (standard care monitoring); £7333 (self-monitoring with CoaguChek XS) and £8609 (self-monitoring with ProTime). The estimated quality-adjusted life-year (QALY) gain associated with self-monitoring was 0.03. Self-monitoring with INRatio2 or CoaguChek XS was found to have ≈ 80% chance of being cost-effective, compared with standard monitoring at a willingness-to-pay threshold of £20,000 per QALY gained. Compared with standard monitoring, self-monitoring appears to be safe and effective, especially for people with AHVs. Self-monitoring, and in particular self-management, of anticoagulation status appeared cost-effective when pooled estimates of clinical effectiveness were applied. However, if self-monitoring does not result in significant reductions in thromboembolic events, it is unlikely to be cost-effective, based on a comparison of annual monitoring costs alone. Trials investigating the longer-term outcomes of self-management are needed, as well as direct comparisons of the various point-of-care coagulometers. This study is registered as PROSPERO CRD42013004944. The National Institute for Health Research Health Technology Assessment programme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call