Abstract

Soils are an enticing reservoir for nature-based climate solutions, but long timescales are required to store amounts of C of relevance to mitigate warming acknowledging its impermanence. Scientific clarity on the controlling factors in soil C persistence should help to disambiguate debates related to permanence in the climate policy domain. However, another contributing factor that is lacking in this debate is a way to compute the climate benefits of C in terrestrial ecosystems over time in the same units as greenhouse gas emissions. We use a case study approach here to demonstrate the use of the metrics of carbon sequestration (CS) and climate benefit of sequestration (CBS) with the aim of assessing the contribution of simultaneous emissions and uptake on radiative forcing. We show how this new computational framework quantifies the climate benefit achieved in two different agricultural systems, one a managed tropical perennial grass system in Hawaiʻi, USA and the other a boreal (cold-temperate, semi-humid) agricultural soil from long term amendment trials in Sweden. Using a set of computations, we show how C inputs and persistence interact to produce different levels of radiative forcing at relevant time frames, which could greatly help to clarify issues of carbon permanence discussed in climate policy. Temporary soil C storage could help to decrease peak warming provided that ambitious emission reductions are part of the portfolio of solutions; the CS and CBS framework gives us a way to quantify it based on biogeochemical understanding of soil C persistence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call