Abstract

Astral microtubules are elongated greatly during anaphase and telophase in sea urchin eggs. The surface density of microtubules reaching the cell surface can be defined at each surface point. Gradients of the surface-density function were assumed to drive membrane proteins whose accumulation causes the formation of contractile-ring microfilaments. An equation was constructed to calculate the movements of the membrane proteins on a curved surface. The equation was applied to eggs compressed between a coverslip and a glass slide by regarding the egg shape as an oblate spheroid. The simulations explained the observations that contractile-ring microfilaments locally appeared and then developed into a complete ring in compressed eggs. When one aster in the mitotic apparatus stopped growing during anaphase, the equation predicted that the zone of contractile-ring microfilaments is displaced toward the inactivated aster, curves in the view from above and tapers off toward the cell edge. The curve gets sharper as eggs are compressed more greatly and as microtubules from the growing aster penetrate more deeply into the opposite hemisphere. The predictions were compared with the observations by Ishii and Shimizu in 1995 and by Hamaguchi in 1998 regarding the furrow formation by the asymmetric mitotic apparatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.