Abstract

ClC-3 is a ubiquitously expressed chloride transport protein that is present in synaptic vesicles and endosome/lysosome compartments. It is largely intracellular but has been observed at the plasma membrane as well. The aim of this study was to identify the pathways and regulation of ClC-3 trafficking to intracellular sites. At the steady state, approximately 94% of transfected ClC-3 was localized intracellularly, and only 6% was at the plasma membrane. Pulse labeling with [(35)S]methionine and biotinylation demonstrated that about 25% of newly synthesized ClC-3 traffics through the plasma membrane. We used both immunofluorescence microscopy and biotinylation assays to assess the trafficking of ClC-3. Plasma membrane ClC-3 was rapidly endocytosed (t((1/2)) approximately 9 min); a portion entered a recycling pool that returned to the cell surface after internalization, and the remainder trafficked to more distal intracellular compartments. ClC-3 associated with clathrin at the plasma membrane. Coimmunoprecipitation and glutathione S-transferase pulldown assays demonstrated that the N terminus of ClC-3 binds to clathrin. Alanine replacement of a dileucine acidic cluster within the cytosolic N terminus (amino acids 13-19) resulted in a molecule that had decreased endocytosis and increased surface expression. This replacement also abolished interaction with clathrin as assessed both by coimmunoprecipitation and glutathione S-transferase pulldown assays. We conclude that ClC-3 is primarily an intracellular transport protein that is transiently inserted into the plasma membrane where it is rapidly endocytosed. Internalization of ClC-3 depends on the interaction between an N-terminal dileucine cluster and clathrin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.