Abstract
Invariants are constructed to classify all noncompact 2-manifolds including those with boundary. The invariants of a 2-manifold M are the space of ends of M and the subspaces of nonplanar ends, of nonorientable ends, and of ends that are limits of compact boundary components. Also the space of ends of the boundary components together with its natural map into the ends of M and the orientation of these ends induced by orientations of neighborhoods of the orientable ends of M are used in addition to the usual compact invariants. Special properties are established for the invariants of a 2-manifold, and a 2-manifold is constructed for each set of invariants with the special properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.