Abstract
Multiplicity-free Hamiltonian group actions are the symplectic analogs of multiplicity-free representations, that is, representations in which each irreducible appears at most once. The most well-known examples are toric varieties. The purpose of this paper is to show that under certain assumptions multiplicity-free actions whose moment maps are transversal to a Cartan subalgebra are in one-to-one correspondence with a certain collection of convex polytopes. This result generalizes a theorem of Delzant concerning torus actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.