Abstract

The classification of electroencephalogram (EEG) signals is a key technique of brain–computer interface (BCI) system. In view of the complexity of EEG signals and the low accuracy in EEG signals recognition, a motor imagery EEG signals classification method with multi-domain fusion based on Dempster–Shafer (D-S) evidence theory is presented in this paper. Firstly, time domain statistics (TDS), autoregressive (AR) model and discrete wavelet transform (DWT) are used to extract features from EEG signals, respectively, and three probabilistic output support vector machine (SVM) classification models are trained based on these three feature sets. Secondly, using the output of each SVM, we construct basic probability assignment (BPA) function and get fusion BPA through D-S evidence theory. Finally, determining the class of test samples based on decision rules. Four databases from BCI competition are employed to evaluate the proposed approach, and the highest classification accuracy reaches 92.83%. Results show that this method acquires higher accuracy and has strong individual adaptability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call