Abstract
The classical Kelvin–Voigt equations for incompressible fluids with non-constant density are investigated in this work. To the associated initial-value problem endowed with zero Dirichlet conditions on the assumed Lipschitz-continuous boundary, we prove the existence of weak solutions: velocity and density. We also prove the existence of a unique pressure. These results are valid for d ∈ {2, 3, 4}. In particular, if d ∈ {2, 3}, the regularity of the velocity and density is improved so that their uniqueness can be shown. In particular, the dependence of the regularity of the solutions on the smoothness of the given data of the problem is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.