Abstract

When we place a superconductor above a magnet, we observe a levitation of the superconductor above the magnet. But when placing a perfect diamagnetic material above a magnet, no levitation is observed. This difference in behavior between the superconductor and the perfect diamagnetic in the presence of an external magnetic field is explained by the classical description of the Meissner effect implemented in this article. We have shown here that the Meissner effect is nothing more than an electromagnetic interaction between the magnetic field created by the superconductor and the magnetic field of the magnet. This classical description of the Meissner effect also allowed us to give a more realistic explanation of the expansion of the universe. We have shown that this expansion is a phenomenon that simply results from a Meissner effect between superconducting dark matter and the magnetic fields of stars. We also pointed out that this expansion is accelerated because the gravitational force between dark matter and the stars around it decreases as these stars move away from the superconducting dark matter. We also used this classical description of the Meissner effect to propose a new method of remote sensing in space in which the superconducting satellite is in perpetual levitation on the night side of the earth and a new and more efficient way to discover new particles through a superconducting detector levitating in the upper atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call