Abstract
We consider two formal systems for the theory of (natural) numbers, both of which are applied second-order functional calculi with equality and the description operator. The two systems have the same primitive symbols, rules of formation, and axioms, differing only in the rules of inference.The primitive logical symbols of the systems are the improper symbols (,), the prepositional connectives ∨, &, ⊃, ≡, ~, the quantifiers ( ), (E), the equality symbol =, the description operator ι,-infinitely many distinct individual (or number) variables, and for each positive integer k infinitely many distinct k-place function variables. Our systems have in addition the following four primitive nonlogical (or arithmetical) constants:0, 1, +, ×.The classes of “number formulas” (nfs) and “propositional formulas” (pfs) are defined inductively as the least classes of formal expressions (i.e. of concatenations of primitive symbols) satisfying the following conditions:(1) 0, 1, and the number variables are nfs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.