Abstract

The contributions of the classical (CP) and alternative (AP) pathways of complement activation to the spontaneous deposition of C3 fragments and the formation of membrane attack complexes (MAC) on human B lymphocytes, were assessed by incubating peripheral blood mononuclear cells with autologous serum in the absence and presence of selective inhibitors of the AP and CP, respectively. While the total amount of C3 fragments deposited was relatively unaffected by blocking either pathway individually, deposition was virtually abrogated by their combined blockade. A marked difference was observed, however, in the nature of the fragments deposited as a result of CP and AP activation: C3b fragments deposited via the CP were extensively ( approximately 90%) converted to the terminal degradation product, C3dg, whereas about 50% of those deposited by the AP persisted as C3b/iC3b fragments. The extent of MAC formation was also found to be highly pathway dependent, with the AP being about 15-fold more efficient at initiating this process than the CP. A model accounting for the effectiveness of the AP in both preserving C3 fragment integrity and initiating MAC is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.